

This material is based upon work supported by the PNNL's Laboratory Directed Research and Development (LDRD) program, and U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under Solar Energy Technologies Office (SETO) Award Number 38637.

Droop-based Grid-Forming Inverter Model (REGFM_A1)

Wei Du

Staff Research Engineer Pacific Northwest National Laboratory

WECC Model Validation Subcommittee Annual Meeting

PNNL is operated by Battelle for the U.S. Department of Energy

September 27th, 2023

Model Specification of a Droop-based Grid-Forming Inverter (REGFM_A1)

- The model includes a voltage source representation, *P-f* and *Q-V* droop controls, *P/Q* limiting controls, and a transient fault current limiting function
- Most of the control blocks came from the CERTS Microgrid Project funded by DOE ٠
- SMA suggested to add the Q_{max}/Q_{min} control block, and the Vflag=0 option ٠

Voltage source behind impedance

P-f droop and P Limiting

Q-V droop and Q Limiting

Timeline for the REGFM_A1 Model

Multiple discussions including two small group to address the concerns

meetings with several core MVS members were held

Discussions of REGFM_A1 before the MVS Meeting

- A few core MVS members including *Pouyan*, *Song*, *Juan*, *Jay*, *Jamie*, *Jeff*, *Doug*, *Deepak*, and *Wei* held multiple discussions including two meetings to work together on addressing the concerns from last meeting, including
 - Rename a few variables of REGFM_A1 to align with existing generic renewable models
 - Clarify what variables should be used to interface with the plant controller model
 - The steady state current limiting and fault ride-through control of grid-forming inverters

Rename a Few Variables and Clarify the Variables to Interface with the Plant Controller

- Change the names P_{set} , Q_{set} , and V_{set} to be P_{ref} , Q_{ref} , and V_{ref}
- Change the name V_{ref} to be V_{cmd}
- Specify that the plant controller changes P_{ref} of the P-f path of REGFM_A1
- A QVFlag was added to determine which variable of the Q-V path the plant controller should change
 - When QVFlag=1, the plant controller changes V_{ref} and the initialization sets $Q_{ref}=0$
 - When QVFlag=0, the plant controller changes Q_{ref} and the initialization sets $Q_{ref} = Q_{inv}$

P-f droop and P Limiting

Q-V droop and Q Limiting

Steady State Current Limiting and Advanced Fault Ride-through Control of Grid-Forming Inverters

- One major concern raised in last MVS meeting was that the REGFM_A1 model might result in limit cycle issue without the steady state current limiting control during a frequency event
- A few additional steady state current limiting and advanced fault ride-through controls were proposed and discussed by the small group, and one OEM has been reached out for comments
- However, OEMs are currently sensitive about the current limiting and fault ride-through controls of GFMs because of IP concerns
- After further examine the limit cycle issue raised in last MVS meeting, it was found that it could be avoided by appropriately setting P_{max} , Q_{max} , and I_{maxF} of the existing REGFM_A1 model
 - According to the discussion in the last small group meeting, if the limit cycle issue could be avoided by appropriately setting *P_{max}*, *Q_{max}*, and *I_{maxF}*, the small team agreed to list the REGFM_A1 model as an Approval Item, and the steady state current limiting together with the advanced fault ride-through control will be further studied and included in the next version of generic model
 - Applicability and limitations of REGFM_A1 should be clarified in the model specification

Simulation Results of REGFM_A1 on the Frequency Event

- Simulation results show that the limit cycle issue can be avoided by appropriately setting P_{max} , Q_{max} , and I_{maxF}
- *I_{maxF}* is used for the transient current limiting during short-circuit faults, and its value should be set larger such as 1.5 pu or . higher
- P_{max} and Q_{max} are used for limiting the steady state output P and Q, and their values should be set to ensure that MVAbase=1 pu (e.g., P_{max} =0.9 and Q_{max} =0.44 assuming a power factor of 0.9)

Inappropriate parameters can result in limit cycle issue

The limit cycle issue can be avoided by correcting the parameters

Conclusions

- According to the discussion in the last small group meeting, if the limit cycle issue could be avoided by appropriately setting P_{max} , Q_{max} , and I_{maxF} , the small team agreed to list the **REGFM_A1 model as an Approval Item**, and the steady state current limiting together with the advanced fault ride-through control will be further studied and included in the next version of droopbased generic model
- Applicability and limitations of REGFM_A1 have been clarified in the updated model specification
 - The REGFM_A1 model includes a voltage source behind impedance representation, *P-f* and *Q-V* droop controls, active and reactive power limiting controls, and a transient fault current limiting function. Therefore, this model can be used to study most events such as the frequency response, islanding and islanded operation, and typical faults with a normal clearing time (e.g., a 6-cycle fault), etc.
 - The REGFM_A1 model does not include the steady state current limiting control and advanced voltage ride-through control for long duration faults. The steady state current limiting control and advanced voltage ride-through control will be included in the future version of generic GFM IBR model

Acknowledgement

I'd like to thank all the contributors listed in the REGFM_A1 model specification for their contributions to this model

n
thwest National Laboratory
of Wisconsin-Madison
Technology AG
eneral Electric
thwest National Laboratory
thwest National Laboratory
thwest National Laboratory
rican Electric Reliability Corporation
Energy, Analysis, Consulting and
PEACE) PLLC
wer Research Institute
ectric
TI
d
Labs
ectricity Coordinating Council
thwest National Laboratory
thwest National Laboratory
thwest National Laboratory

Summary

- Model spec approved in December 2021
- Model spec received detailed suggestions from a GFM OEM
- Simulations results compare well with the field test results
- Model benchmarking completed and all models match very well

I'd like to make a motion to approve this REGFM_A1 model

Thank you

Wei Du <u>Wei.du@pnnl.gov</u>

Backup Slides (Already presented in May)

12

Comparison with the CERTS Microgrid Field Test Results

CERTS/AEP Microgrid Testbed

- AEP/CERTS testbed: one of the earliest inverter-based microgrids in the world, funded by DOE
- Principle Investigator: Prof. Bob Lasseter from University of Wisconsin-Madison
- The CERTS Microgrid Program has been running for almost 20 years

A 100% Grid-Forming-Inverter-based testbed

[1] Lasseter, R.H., Eto, J.H., Schenkman, B., Stevens, J., Vollkommer, H., Klapp, D., Linton, E., Hurtado, H. and Roy, J., 2010. CERTS microgrid laboratory test bed. IEEE Transactions on Power Delivery, 26(1)

http://certs.lbl.gov/certs-der-pubs.html

Under-Frequency Load Shedding Testing (All-GFM-based System)

- After loss of the 58 kW ESS, the total 220 kW load exceeds the 193 kW maximum generation of A1 and B1
- Load Bank 4 is tripped in 0.5 s by the frequency relay
- The overload mitigation control helps to trigger under-frequency load shedding when the entire system is overloaded

Field test results from CERTS/AEP testbed

[1] Wei Du, Francis K. Tuffner, Kevin P. Schneider, Robert Lasseter, et al., "Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems". IEEE Transactions on Power Delivery, 2020.

CERTS/AEP Test Site

---- EMT — Phasor

Under-Frequency Load Shedding (GFM & Machine Mixed System)

- frequency load shedding
- with each other

[1] Du, Wei, Robert H. Lasseter, and Amrit S. Khalsa. "Survivability of autonomous microgrid during overload events." IEEE Transactions on Smart Grid 10, no. 4 (2018): 3515-3524.

Comparison with the SMA GFM Field Test Results

Comparison between the SMA Field Test Results and the PSLF Simulation Results

- PSLF simulation results match the SMA hardware testing results
 - Case study was performed on the micro-WECC system for frequency regulation
 - IBR penetration level: 73%, 10% headroom •
- Both the simulation and hardware testing show that droop-controlled GFM can significantly improve the system primary frequency response

(Simulation credit: Dmitry, BPA)

[1] A. Knobloch et al., "Synchronous energy storage system with inertia capabilities for angle, voltage and frequency stabilization in power grids," 11th Solar & Storage Power System Integration Workshop (SIW 2021), 2021, pp. 71-78

Comparison between the SMA Field Test Results and the PSLF Simulation Results

- The GFM unit behaves as a controllable voltage source behind impedance, so it increases the output power almost instantaneously after the disturbance
- The synchronous generator's output power is clamped so its speed does not change too much

PSLF Simulation Results of Micro-WECC System (Credit: Dmitry, BPA)

IBR Fast frequency response can be effective in maintaining system frequency (inverter-level, droop control, headroom)

Fig. 8: Impact of different inverter system control modes on the frequency of a downscaled low-inertia power system at a power imbalance event

REGFM_A1 Model Benchmarking Results

Model Specification of a Droop-Controlled, Grid-Forming Inverter (REGFM_A1)

- The model includes the voltage source representation, *P-f* and *Q-V* droop control, *P/Q* limiting, and fault current limiting
- Most of the control blocks came from the CERTS Microgrid Project^[1,2]
- SMA suggested to add the Q_{max}/Q_{min} control block, and the Vflag=0 option

P-f droop and P Limiting

[1] Lasseter, Robert H., et al. "CERTS microgrid laboratory test bed." IEEE Transactions on Power Delivery 26.1 (2010): 325-332.

[2] Du, Wei, Robert H. Lasseter, and Amrit S. Khalsa. "Survivability of autonomous microgrid during overload events." IEEE Transactions on Smart Grid 10, no. 4 (2018): 3515-3524.

- 0.05 pu Step Increase in Voltage •
 - VFlag=0

- 0.05 pu Step Increase in Voltage
 - VFlag=1

3

3

3

3

PowerWorld

2.8

- PowerWorld

2.8

PowerWorld

2.8

- PowerWorld

2.8

— — PSS/E

---- PSLF

— — PSS/E

--- PSLF

— — — PSS/E

— — PSS/E ---- PSLF

2.6

2.6

2.6

2.6

--- PSLF

- 0.05 pu Step Decrease in Voltage •
 - VFlag=0

3

3

3

- 0.05 pu Step Decrease in Voltage •
 - VFlag=1

- Frequency step up from 60 Hz to 60.2 Hz •
 - VFlag=0

3

Frequency step up from 60 Hz to 60.2 Hz

• VFlag=1

3

3

3

3

PowerWorld

2.6

2.6

2.6

2.6

2.8

- PowerWorld

2.8

- PowerWorld

2.8

2.8

- PowerWorld

— — PSS/E ---- PSLF

- - - PSS/E ---- PSLF

— — PSS/E

---- PSLF

— — — PSS/E - PSLF

.

t (s)

t (s)

t (s)

t (s)

2.4

- Frequency step down from 60 Hz to 59.8 Hz
 - VFlag=0

- Frequency step down from 60 Hz to 59.8 Hz
 - VFlag=1

- 0.1 s Short-Circuit Fault
 - VFlag=0 •

- 0.1 s Short-Circuit Fault
 - VFlag=1

2

2.2

2.4

t (s)

2.6

2.8

3

Two-GFM Islanded System

- Step Increase in Load
 - VFlag=0

Two-GFM Islanded System

- Step Increase in Load
 - VFlag=1

Response of GFM2

